
RAIZ QUADRADA
A raiz quadrada (√) de um número é determinada por um número real positivo elevado ao quadrado (x2). Já na raiz cúbica, o número é elevado ao cubo (y3).
Além disso, se a raiz for elevada a quarta potência (z4) é chamada de raiz quarta, e se for elevada a quinta potência (t5) é raiz quinta.
Como calcular a raiz quadrada?
Para saber a raiz quadrada de um número, podemos pensar que um número elevado ao quadrado será o resultado. Portanto, o conhecimento da tabuada e de potenciação são extremamente necessários.
No entanto, alguns números são difíceis por serem muito grandes. Nesse caso, utiliza-se o processo de fatoração, por meio da decomposição em números primos.


Raiz quadrada exata
A raiz quadrada exata ocorre quando o resultado da operação é um número racional. Os exemplos supracitados são casos de raiz quadrada exata. Por exemplo, a √16 é exata porque o seu resultado é 4, que é um número racional. Quando há no radicando um número com raiz quadrada desconhecida, utilizamos fatoração para calcular uma raiz exata.
Exemplo:
Calcule o valor da √324.
Resolução:
Para encontrar a √324, inicialmente fatoraremos esse número:


Exemplos:
√4 = 2, pois 2² = 4
√9 = 3, pois 3² = 9
√16 = 4, pois 4² = 16
√25 = 5, pois 5² = 25
√36 = 6, pois 6² = 36
Exemplos:
√49 = 7, pois 7² = 49
√64 = 8, pois 8² = 64
√81 = 9, pois 9² = 81
√100 = 10, pois 10² = 100
√144 = 12, pois 12² = 144
Raiz quadrada não exata
Em muitos casos, o número pode não possuir uma raiz quadrada exata, ou seja, a solução da raiz quadrada é um número irracional. Para calcular uma raiz quadrada não exata, utilizamos aproximações, ou seja, números que quando elevamos ao quadrado chegam bem próximo do resultado desejado.
Exemplo:
Calcule o valor da √60.
Resolução:
Sabemos que essa raiz não é exata, então, primeiramente, identificaremos qual é o número anterior a 60 que possui raiz exata, que é 49, e também o número posterior a 60 que possui raiz exata, que é 64.
√49 < √60 < √64
Calculando as raízes de 49 e 64:
7 < √60 < 8
Note que 60 está próximo de 64, então a √60 estará próxima de 8. Calcularemos, assim, o quadrado dos números próximos a 8.
7,9² = 62,41
7,8² = 60,84
7,7² = 59,29
Descobrimos que a √60 está entre 7,7 e 7,8.
Portanto, dizemos que a √60 = 7,7 por falta ou que a √60 = 7,8 por excesso.