top of page
student-blackboard-solves-problem-teacher-clutched-her-head-shock_554999-66.webp

RAIZ QUADRADA

A raiz quadrada (√) de um número é determinada por um número real positivo elevado ao quadrado (x2). Já na raiz cúbica, o número é elevado ao cubo (y3).

Além disso, se a raiz for elevada a quarta potência (z4) é chamada de raiz quarta, e se for elevada a quinta potência (t5) é raiz quinta.

Como calcular a raiz quadrada?

Para saber a raiz quadrada de um número, podemos pensar que um número elevado ao quadrado será o resultado. Portanto, o conhecimento da tabuada e de potenciação são extremamente necessários.

No entanto, alguns números são difíceis por serem muito grandes. Nesse caso, utiliza-se o processo de fatoração, por meio da decomposição em números primos.

INDICE.png
INDICE 2.jfif

Raiz quadrada exata

A raiz quadrada exata ocorre quando o resultado da operação é um número racional. Os exemplos supracitados são casos de raiz quadrada exata. Por exemplo, a √16 é exata porque o seu resultado é 4, que é um número racional. Quando há no radicando um número com raiz quadrada desconhecida, utilizamos fatoração para calcular uma raiz exata.

Exemplo:

Calcule o valor da √324.

Resolução:

Para encontrar a √324, inicialmente fatoraremos esse número:

fatoracao-numero-324.webp
raiz-quadrada-fatoracao-324 calculo.webp

Exemplos:

√4 = 2, pois 2² = 4

√9 = 3, pois 3² = 9

√16 = 4, pois 4² = 16

√25 = 5, pois 5² = 25

√36 = 6, pois 6² = 36

Exemplos:

 

√49 = 7, pois 7² = 49

√64 = 8, pois 8² = 64

√81 = 9, pois 9² = 81

√100 = 10, pois 10² = 100

√144 = 12, pois 12² = 144

Raiz quadrada não exata

Em muitos casos, o número pode não possuir uma raiz quadrada exata, ou seja, a solução da raiz quadrada é um número irracional. Para calcular uma raiz quadrada não exata, utilizamos aproximações, ou seja, números que quando elevamos ao quadrado chegam bem próximo do resultado desejado.

Exemplo:

Calcule o valor da √60.

Resolução:

Sabemos que essa raiz não é exata, então, primeiramente, identificaremos qual é o número anterior a 60 que possui raiz exata, que é 49, e também o número posterior a 60 que possui raiz exata, que é 64.

√49 < √60 < √64

Calculando as raízes de 49 e 64:

7 < √60 < 8

Note que 60 está próximo de 64, então a √60 estará próxima de 8. Calcularemos, assim, o quadrado dos números próximos a 8.

7,9² = 62,41

7,8² = 60,84

7,7² = 59,29

Descobrimos que a √60 está entre 7,7 e 7,8.

Portanto, dizemos que a √60 = 7,7 por falta ou que a √60 = 7,8 por excesso.

bottom of page